CVPR 2024最佳論文獎(jiǎng)新鮮出爐,生成式AI成最大贏家! 一篇是Rich Human Feedback for Text-to-Image Generation,受大模型中的RLHF技術(shù)啟發(fā),團(tuán)隊(duì)用人類反饋來(lái)改進(jìn)Stable Diffusion等文生圖模型。 這項(xiàng)研究來(lái)自UCSD、谷歌等,共同一作華南農(nóng)業(yè)大學(xué)校友Youwei Liang、清華校友Junfeng He、武大、港中文校友Gang Li。 另一篇Generative Image Dynamics更偏理論一些,提出了一種基于圖像空間先驗(yàn)的場(chǎng)景運(yùn)動(dòng)建模方法,可用于通過(guò)靜態(tài)圖像生成無(wú)縫循環(huán)視頻,還能實(shí)現(xiàn)與圖像中對(duì)象的交互。 這項(xiàng)研究來(lái)自谷歌,一作谷歌DeepMind研究員Zhengqi Li(李正奇)。 最佳學(xué)生論文獎(jiǎng)也一同公布。 一篇BioCLIP: A Vision Foundation Model for the Tree of Life,構(gòu)建了大規(guī)模生物學(xué)圖像數(shù)據(jù)集,并提出BioCLIP基礎(chǔ)模型來(lái)學(xué)習(xí)生物分類的層次表示。 來(lái)自俄亥俄州立大學(xué)等,共同一作Samuel Stevens,Jiaman Wu。 另一篇是3D高斯?jié)姙R領(lǐng)域的Mip-Splatting: Alias-free 3D Gaussian Splatting,通過(guò)引入3D平滑濾波器、用2D Mip濾波器替換2D膨脹濾波器來(lái)消除偽影和混疊等問(wèn)題。 來(lái)自圖賓根大學(xué)、上?萍即髮W(xué)等,三位一作Zehao Yu、Anpei Chen(陳安沛)、Binbin Huang皆為上?萍即髮W(xué)在讀或畢業(yè)生。 今年CVPR的參與規(guī)模和受關(guān)注度都達(dá)到了新高度,在頒獎(jiǎng)活動(dòng)結(jié)束后不久,官網(wǎng)就被擠爆了…… OpenAI還在一場(chǎng)活動(dòng)中現(xiàn)場(chǎng)獻(xiàn)上GPT-4o語(yǔ)音和視覺(jué)模式的最新Demo。 今年CVPR共收到投稿11532份,比上年增加25%,其中2719篇論文被接收,接收率為23.6%,競(jìng)爭(zhēng)非常激烈。 接下來(lái)一起看看獲獎(jiǎng)?wù)撐氖侨绾蚊摲f而出的。 最佳論文 Rich Human Feedback for Text-to-Image Generation 論文作者來(lái)自加利福尼亞大學(xué)圣地亞哥分校、谷歌研究院、南加州大學(xué)、劍橋大學(xué)、布蘭代斯大學(xué)。 當(dāng)前文本生圖模型生成的圖像仍存在失真、與文本不匹配、美學(xué)質(zhì)量差等問(wèn)題,而現(xiàn)有評(píng)估指標(biāo)如IS、FID等無(wú)法反映單個(gè)圖像的質(zhì)量細(xì)節(jié)問(wèn)題。 先前一些工作嘗試采集人類偏好或評(píng)分作為反饋,但仍然是單一的整體得分,缺乏可解釋性和可操作性。因此,作者提出了收集豐富的細(xì)粒度人類反饋信息,用于更好地評(píng)估和改進(jìn)生成模型。 作者用Stable Diffusion生成的Pick-a-Pic數(shù)據(jù)集篩選了18K張圖像,之后收集了“標(biāo)注文本描述中與圖像不匹配的關(guān)鍵詞”、“標(biāo)記圖像中的失真/不合理區(qū)域”等人類反饋信息。每張圖像由3人獨(dú)立標(biāo)注,通過(guò)平均/投票等方式合并得到最終反饋標(biāo)簽。 之后,設(shè)計(jì)了一種基于ViT和T5X的多模態(tài)Transformer模型RAHF,使用三種預(yù)測(cè)器預(yù)測(cè)上述豐富的人類反饋信息: 使用卷積層和上采樣層預(yù)測(cè)失真和不匹配的熱力圖 使用卷積層和全連接層預(yù)測(cè)4個(gè)方面的評(píng)分 使用Transformer解碼器生成帶有特殊token的文本序列,標(biāo)識(shí)不匹配的關(guān)鍵詞 實(shí)驗(yàn)中,RAHF模型在多個(gè)任務(wù)上顯著優(yōu)于基線模型,如ResNet-50和CLIP。 此外,作者還探索了三種利用RAHF預(yù)測(cè)的豐富反饋來(lái)改進(jìn)文本到圖像生成模型Muse方法。 使用預(yù)測(cè)的質(zhì)量評(píng)分篩選優(yōu)質(zhì)數(shù)據(jù)微調(diào)Muse模型,生成圖像的質(zhì)量前后對(duì)比如下: 使用預(yù)測(cè)的失真熱力圖生成掩碼區(qū)域,在該區(qū)域內(nèi)對(duì)Muse生成圖像進(jìn)行局部修補(bǔ),減少了生成圖像的失真問(wèn)題: Generative Image Dynamics 論文作者來(lái)自谷歌研究院。 自然界中的場(chǎng)景總是在運(yùn)動(dòng),即使是看似靜態(tài)的場(chǎng)景也會(huì)因?yàn)轱L(fēng)、水流、呼吸等而產(chǎn)生微妙的振蕩。 論文提出了一種從單張靜態(tài)圖像生成自然振蕩動(dòng)畫的新方法,而且支持用戶與圖中物體進(jìn)行交互: 團(tuán)隊(duì)發(fā)現(xiàn)自然場(chǎng)景中的振蕩運(yùn)動(dòng),如樹(shù)葉擺動(dòng)等,主要由低頻分量組成,因此引入了譜體積作為運(yùn)動(dòng)表示,即對(duì)視頻序列中提取的像素運(yùn)動(dòng)軌跡進(jìn)行傅里葉變換得到的頻域表示,只需少量的低頻傅里葉系數(shù)即可保留大部分運(yùn)動(dòng)信息。 然后,作者采用潛變量擴(kuò)散模型從輸入圖像預(yù)測(cè)譜體積,并提出了頻率自適應(yīng)歸一化和頻率協(xié)調(diào)去噪兩種策略來(lái)提高預(yù)測(cè)質(zhì)量。 最后,將預(yù)測(cè)的譜體積通過(guò)逆傅里葉變換轉(zhuǎn)化為運(yùn)動(dòng)紋理,并設(shè)計(jì)了一種基于圖像的渲染模塊,將輸入圖像按預(yù)測(cè)的運(yùn)動(dòng)軌跡進(jìn)行前向渲染,最終生成展現(xiàn)自然振蕩運(yùn)動(dòng)的動(dòng)畫視頻序列。 結(jié)合基于圖像的渲染模塊,這些軌跡可以用于多個(gè)應(yīng)用場(chǎng)景,例如將靜態(tài)圖像轉(zhuǎn)換為無(wú)縫循環(huán)的視頻,或者通過(guò)將光譜體積解釋為圖像空間模態(tài)基底,近似物體動(dòng)態(tài),讓用戶能夠與真實(shí)圖片中的物體進(jìn)行逼真的交互。 作者從定量和定性兩方面評(píng)估生成視頻的質(zhì)量,結(jié)果顯示該方法明顯優(yōu)于基準(zhǔn): 最后再來(lái)看一下效果: 最佳學(xué)生論文 BioCLIP: A Vision Foundation Model for the Tree of Life 論文作者來(lái)自俄亥俄州立大學(xué)、微軟研究院、加利福尼亞大學(xué)歐文分校、倫斯勒理工學(xué)院。 他們構(gòu)建了一個(gè)大規(guī)模生物學(xué)圖像數(shù)據(jù)集TreeOfLife-10M,包含1040萬(wàn)張圖像,覆蓋454103個(gè)生物物種,并提出了BioCLIP模型,利用CLIP式的多模態(tài)對(duì)比學(xué)習(xí)目標(biāo),結(jié)合生物學(xué)分類層次結(jié)構(gòu)用TreeOfLife-10M數(shù)據(jù)集預(yù)訓(xùn)練模型。 使用該方法可很好地捕獲生物分類體系的層級(jí)結(jié)構(gòu),從而實(shí)現(xiàn)對(duì)看不見(jiàn)類別樣本的泛化能力。 Mip-Splatting: Alias-free 3D Gaussian Splatting 3D高斯濺射展示了令人印象深刻的新穎視圖合成結(jié)果,達(dá)到了高效率和高保真度。然而,當(dāng)改變采樣率時(shí),例如通過(guò)改變焦距或相機(jī)距離,可以觀察到強(qiáng)烈的偽影。 團(tuán)隊(duì)發(fā)現(xiàn)這種現(xiàn)象的根源可歸因于缺乏3D頻率約束和2D膨脹濾波器的使用。 為了解決這個(gè)問(wèn)題,團(tuán)隊(duì)引入了一個(gè)3D平滑濾波器,根據(jù)輸入視圖引起的最大采樣頻率來(lái)限制3D Gaussian primitive的大小,從而消除放大時(shí)的高頻偽影。 此外,用模擬2D盒式濾波器的2D Mip濾波器替換2D膨脹濾波器,可以有效緩解混疊和膨脹問(wèn)題。 團(tuán)隊(duì)還提供了在線演示,感興趣的可以玩起來(lái)了。 本文來(lái)源:量子位 |
原創(chuàng)欄目
IT百科
網(wǎng)友評(píng)論
聚超值•精選