首頁 > 科技要聞 > 科技> 正文

馬斯克燒幾十億美元造最大超算中心,10萬塊H100訓練Grok追趕GPT-4o

新智元 整合編輯:太平洋科技 發(fā)布于:2024-05-29 15:30

前段時間,OpenAI、谷歌、微軟相繼開大會,AI圈子的競爭如火如荼。

這么熱鬧的時候,怎么能少得了馬斯克。

前段時間忙著特斯拉和星鏈的他,最近好像開始騰出手,而且不鳴則已、一鳴驚人,直接放出一個大消息——自己要造世界上最大的超算中心。

今年3月,他旗下的xAI發(fā)布了最新版的Grok 1.5,此后一直有關于Grok 2即將面世的傳說,但卻遲遲沒有官方消息。

難道是因為算力不夠?

沒錯,億萬富翁可能也買不到足夠的芯片。今年四月他曾親自下場表示,沒有足夠多的先進芯片,推遲了Grok 2模型的訓練和發(fā)布。

他表示,訓練Grok 2需要大約2萬個基于Hopper架構的英偉達H100 GPU,并補充說Grok 3模型及更高版本將需要10萬個H100 芯片。

特斯拉第一季度的財報也顯示,公司此前一直受到算力的限制,當時馬斯克的計劃還是年底前部署8.5萬個H100 GPU,將xAI從紅杉資本和其他投資者那里籌集的60億美元中的大部分都花在芯片上。

目前每臺H100的售價約為3萬美元,不算建造費用和其他服務器設備,僅僅是芯片就需要花掉28億美元。

根據(jù)馬斯克的估算,這個芯片儲量訓練Grok 2綽綽有余。

但可能老馬思考了一個月之后,覺得這一步邁得還不夠大,不夠有突破性。畢竟xAI的定位是要和OpenAI、谷歌這種強勁對手正面掰頭的,以后想訓練模型可不能再因為算力掉鏈子。

于是,他最近公開表示,xAI需要部署10萬個H100來訓練和運行Grok的下一個版本。

而且,xAI還計劃將所有芯片串聯(lián)成一個巨大的計算機——馬斯克稱之為「超級計算工廠」(Gigafactory of Compute)。

老馬這個月已經向投資者表示,他希望在2025年秋季之前讓這臺超級計算機運行起來,而且他將「個人負責按時交付超級計算機」,因為這對于開發(fā)LLM至關重要。

這臺超算可能由xAI與Oracle合作共建。這幾年來,xAI已經從Oracle租用了帶有約1.6萬個H100芯片的服務器,是這些芯片最大的訂單來源。

如果不發(fā)展自己的算力,未來幾年xAI在云服務器上很可能就要花費100億美元,算下來居然還是「超級計算工廠」比較省錢。

目前最大GPU集群

這個「超級計算工廠」一旦完工,規(guī)模將至少是當前最大GPU集群的4倍。

比如Meta官網在3月發(fā)布的數(shù)據(jù)顯示,他們當時推出了2個包含2.4萬個H100 GPU的集群用于Llama 3的訓練。

雖然英偉達已經宣布今年下半年開始生產并交付,但馬斯克目前的計劃還是采購H100。

為什么不用最新型號的芯片,反而要大批量購入快要淘汰的型號?這其中的原因,老黃本人向我們解釋過——「在今天的AI競爭里,時間很重要」。

“英偉達會每一年更新一代產品,而如果你想等我的下一個產品,那么你就丟失了訓練的時間和先發(fā)優(yōu)勢。

下一個達到里程碑的公司會宣布一個突破性的AI,而接下來的第二名只在它上面提升0.3%。你要選擇做哪一種?

這就是為什么一直做技術領先的公司很重要,你的客戶會在你上面建設并且相信你會一直領先。這里面時間很重要。

這就是為什么我的客戶現(xiàn)在依然瘋狂的在建設Hopper系統(tǒng)。時間就是一切。下一個里程碑馬上就來。”

然而,即使一切順利,「超級計算工廠」在馬斯克的「個人負責」下按時交付,這個集群到了明年秋天是否仍然有規(guī)模優(yōu)勢,也是一個未知數(shù)。

扎克伯格今年1月曾經在Instagram上發(fā)帖,稱Meta到今年底將再部署35萬個H100,加上之前的算力總共相當于60萬個H100,但他并未提及單個集群的芯片數(shù)量。

但這個數(shù)字沒過半年就幾乎翻了一番,5月初Llama 3發(fā)布前,有消息稱Meta已從英偉達額外購買了50萬塊GPU,總數(shù)達到 100 萬塊,零售價值達300億美元。

同時,微軟的目標是到年底擁有180萬個 GPU,OpenAI甚至更加激進,希望為最新的AI模型使用1000萬個GPU。這兩家公司也在討論開發(fā)一個價值1000億美元的超級計算機,包含數(shù)百萬個英偉達GPU。

這場算力之戰(zhàn),最后誰會勝出呢?

應該是英偉達吧。

而且不僅僅是H100,英偉達CFO Colette Kress曾經提到過一份Blackwell旗艦芯片的優(yōu)先客戶名單,包括OpenAI、亞馬遜、谷歌、xAI等等。

即將投產的B100,以及英偉達之后將要,將會源源不斷地進入科技巨頭們的超算中心,幫助他們完成算力的升級迭代。

芯片短缺,電也不夠

馬斯克在談到特斯拉的算力問題時也補充說,雖然迄今為止芯片短缺是AI發(fā)展的一大制約因素,但電力供應在未來一兩年將至關重要,甚至會取代芯片成為最大的限制因素。

包括新建的這家「超級計算工廠」的選址,最需要考慮的因素也是電力供應。一個擁有10萬GPU的數(shù)據(jù)中心可能需要100兆瓦的專用電力。

要提供這種量級的電力,xAI總部辦公室所在的舊金山灣區(qū)顯然不是理想的選擇。為了降低成本,數(shù)據(jù)中心往往建在電力更便宜且供應更充足的偏遠地區(qū)。

例如,微軟和OpenAI除了計劃那個耗資千億美元的超算,也正在威斯康星州建造大型數(shù)據(jù)中心,建設成本約為100億美元;亞馬遜云服務的數(shù)據(jù)中心則選址在亞利桑那州。

「超級計算工廠」一個非?赡艿倪x址,是特斯拉總部,德克薩斯州奧斯汀市。

去年特斯拉宣布建造的Dojo就部署在了這里。這臺超算基于定制芯片,幫助訓練AI自動駕駛軟件,也可以用于向外界提供云服務。

第一臺Dojo運行在1萬個GPU上,建造成本約為3億美元。馬斯克4月表示,特斯拉目前共有3.5萬個GPU用于訓練自動駕駛系統(tǒng)。

在數(shù)據(jù)中心進行模型訓練是一個極其耗電的過程。據(jù)估計,訓練GPT-3的耗電量為1287兆瓦時,大約相當于130個美國家庭每年消耗的電量。

注意到AI電力問題的CEO不止馬斯克一人,Sam Altman本人曾向初創(chuàng)公司Helion Energy投資3.75 億美元,這家公司旨在利用核聚變提供一種更環(huán)保、更低成本的 AI 數(shù)據(jù)中心運行方式。

馬斯克則沒有押注在核聚變技術上,他認為,AI公司很快將開始爭奪降壓變壓器(step down transformer),可以將高壓電流轉換為電網可用的電力,「從公用電網獲得的電力(例如 300 千伏)降至 1 伏以下是一個巨大的下降」。

芯片之后,AI行業(yè)需要「transformers for Transformers」。

參考資料:

https://www.theinformation.com/articles/musk-plans-xai-supercomputer-dubbed-gigafactory-of-compute?rc=epv9gi

https://www.inc.com/ben-sherry/elon-musk-touts-nvidia-dominance-predicts-a-giant-leap-in-ai-power.html

https://finance.yahoo.com/news/jensen-huang-elon-musk-openai-182851783.html?guccounter=1

本文來源:新智元

 

新智元

網友評論

聚超值•精選

推薦 手機 筆記本 影像 硬件 家居 商用 企業(yè) 出行 未來
二維碼 回到頂部